Organic Chemistry

by

Robert C. Neuman, Jr.
Professor of Chemistry, emeritus
University of California, Riverside

orgchembyneuman@yahoo.com
<http://web.chem.ucsb.edu/~neuman/orgchembyneuman/>

Chapter Outline
June, 2013

I. Foundations
1. Organic Molecules and Chemical Bonding
2. Alkanes and Cycloalkanes
3. Haloalkanes, Alcohols, Ethers, and Amines
4. Stereochemistry
5. Organic Spectrometry

II. Reactions, Mechanisms, Multiple Bonds
6. Organic Reactions * (Not yet Posted)
7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution
8. Alkenes and Alkynes
10. Alkenes and Alkynes. Addition Reactions
11. Free Radical Addition and Substitution Reactions

III. Conjugation, Electronic Effects, Carbonyl Groups
12. Conjugated and Aromatic Molecules
14. Substituent Effects
15. Carbonyl Compounds. Esters, Amides, and Related Molecules

IV. Carbonyl and Pericyclic Reactions and Mechanisms
17. Oxidation and Reduction Reactions
18. Reactions of Enolate Ions and Enols
19. Cyclization and Pericyclic Reactions *(Not yet Posted)

V. Bioorganic Compounds
20. Carbohydrates
21. Lipids
22. Peptides, Proteins, and α−Amino Acids
23. Nucleic Acids

Note: Chapters marked with an () are not yet posted.
Detailed Contents
June, 2013

I. Foundations

1: Organic Molecules and Chemical Bonding

1.1 Organic Molecules

Bonding Characteristics of Atoms (1.1A)
Bonds and Unshared Electron Pairs for C, N, O, and F
Bonds and Unshared Electron Pairs for Other Atoms
Structures of Organic Molecules

Compounds with Four Single Bonds to C (1.1B)
Alkanes (C-C and C-H Bonds)
Compounds with C-X, C-O, or C-N Bonds
Additional R Groups on N or O

Functional Groups

Compounds with Double and Triple Bonds to C (1.1C)
Alkenes (C=C) and Alkynes (C≡C)
Compounds with C=N, C≡N, and C=O Bonds

Functional Group Summary

Compounds With C=O Bonded to N, O, or X (1.1D)
An Overview of Organic Functional Groups (1.1E)

1.2 Chemical Bonds

Localized Molecular Orbitals (1.2A)
Electronic Structure of Atoms (1.2B)
Electron Configurations
Atomic Orbitals
Lobes and Nodes

Chemical Bonds in Alkanes (1.2C)
C-H Bonds in CH₄
sp³ Hybrid Orbitals of C
C-H and C-C Bonds in Ethane
C-H and C-C Molecular Orbitals

Chemical Bonds in Alkenes and Alkynes (1.2D)
Hybridization of C in C=C Bonds
C-H and C≡C Molecular Orbitals
Hybridization of C in C≡C Bonds

The Shapes of Molecules (VSEPR) (1.2E)

Bonds between C and N, O, or X (1.2F)
Carbon-Nitrogen Bonds
CH₃-NH₂ (sp³ N)
CH₂=NH (sp² N)
H-C≡N (sp N)
Carbon-Oxygen Bonds
Carbon-Halogen Bonds

1.3 Organic Chemistry

Molecular Structure (1.3A)
Chemical Reactions (1.3B)
Bioorganic Chemistry (1.3C)

1.4 Bon Voyage!
2: Alkanes and Cycloalkanes

2.1 Alkanes

- Structures of Alkanes (2.1A)
 - Kekulé, Electron-Dot and Three-Dimensional Structures
 - Condensed Structural Formulas
 - Molecular Formulas
 - Structural Isomers
 - Line-Bond Structures
- Alkane Names and Physical Properties (2.1B)
 - Physical Properties
 - Names

2.2 Alkane Systematic Nomenclature

- Alkane Nomenclature Rules (2.2A)
 - The Prefixes Di, Tri, and Tetra
 - Many Ways to Draw the Same Molecule
- Alkyl Groups Besides Methyl (2.2B)
 - Names of Alkyl Groups
 - Isopropyl and t-Butyl

2.3 Cycloalkanes

- Structural Drawings (2.3A)
- Nomenclature (2.3B)
 - Numbering a Cycloalkane
- Physical Properties (2.3C)

2.4 Conformations of Alkanes

- Staggered and Eclipsed Conformations of Ethane (2.4A)
 - A Comparison of Staggered and Eclipsed Conformations
 - Newman Projections
- Rotation about the C-C Bond (2.4B)
 - Rapid Rotation about C-C Bonds
 - Energy and Stability
- Conformations of Other Alkanes (2.4C)
 - Propane
 - Butane
 - Torsional Strain and Steric Strain (2.4D)
 - Torsional Strain
 - Steric Strain
 - Anti and Gauche Staggered Conformations (2.4E)
 - Anti Conformation
 - Gauche Conformation

2.5 Conformations of Cycloalkanes

- Cyclopropane, Cyclobutane and Cyclopentane (2.5A)
- Cyclohexane (2.5B)
 - Axial and Equatorial Hydrogens
 - Drawing Cyclohexane Chair Conformations
 - C-C Rotation in Cyclohexane (Ring Flipping)

2.6 Conformations of Alkylcyclohexanes

- Methylcyclohexane (2.6A)
 - Axial versus Equatorial CH₃
 - Conformational Mixtures
- Other Monoalkylcyclohexanes (2.6B)
 - Equatorial Preferences

(continued next page)
2.6 Conformations of Alkylcyclohexanes (continued)

Conformations of Dialkylcyclohexanes (2.6C)
- 1,1-Dialkylcyclohexanes
- 1,4-Dialkylcyclohexanes
- Molecular Configurations of 1-Isopropyl-4-methylcyclohexane
- 1,2- and 1,3-Dialkylcyclohexanes

5 cis and trans Dialkylcycloalkanes (2.6D)
- cis and trans-1,2-Dimethylcyclopropane
- cis and trans-1-Isopropyl-4-methylcyclohexane
- Use of cis and trans with Other Dialkylcyclohexanes
- Drawings of cis and trans Dialkylcycloalkanes

3: Haloalkanes, Alcohols, Ethers, and Amines

3.1 Halogen, OH, and NH₂ Functional Groups

Haloalkanes, Alcohols, and Amines (3.1A)
Simple Examples
Unshared Electron Pairs and Polar Bonds

Unshared Electron Pairs (3.1B)
- Carbon, Nitrogen, Oxygen, and Fluorine
- Chlorine, Bromine, and Iodine
- Hydrogen
- Chemical Reactivity of Unshared Electron Pairs

Bond Polarity (3.1C)
- Electron Distribution in Polar Bonds
- Electronegativity
- Dipoles and Dipole Moments

3.2 Haloalkanes (R-X)

Nomenclature (3.2A)
- Halogens are Substituents
- Common Nomenclature

3.2 Haloalkanes (R-X) (continued)

Properties of Haloalkanes (3.2B)
- Polarity and Dipole Moments
- C-X Bond Length and Size of X
- Apparent Sizes of X
- Boiling Points
- C-X Bond Strengths

3.3 Alcohols (R-OH)

Nomenclature (3.3A)
- Systematic Names
- Common Nomenclature

Properties of Alcohols (3.3B)
- Structure
- Polarity

Hydrogen Bonding (3.3C)
- The OH Group Forms Hydrogen Bonds
- Effect on Boiling Points
- Effect on Solubility

3.4 Ethers (R-O-R)

Physical Properties and Structure (3.4A)
- Boiling Points
- Bond Angles

(continued next page)
3.4 Ethers (R-O-R) (continued)

Nomenclature (3.4B) 3-28
 Systematic Nomenclature
 Common Nomenclature
Cyclic Ethers (3.4C) 3-28
 Nomenclature
 Properties

3.5 Amines (RNH₂, R₂NH, R₃N) 3-31

1°, 2°, and 3° Amines (3.5A) 3-31
Nomenclature (3.5B) 3-34
 1° Amines (RNH₂)
 2° and 3° Amines (R₂NH and R₃N)
 Common Nomenclature
 Cyclic Amines
Structure and Properties of Amines (3.5C) 3-38
 Structure
 Inversion at Nitrogen
 Polarity and Hydrogen Bonding
 Bond Strengths and Bond Lengths

3.6 Amines are Organic Bases 3-43

Aminium Ions (3.6A) 3-44
Nomenclature
Protonation of Amines

3.6 Amines are Organic Bases (continued)

Basicity of Amines (3.6B) 3-45
 Conjugate Acids and Bases
 The Strengths of Bases
 The Strengths of the Conjugate Acids of these Bases
 The Relation Between Strengths of Conjugate Acids and Bases
Aminium Ion Acidity (3.6C) 3-49
 Methanaminium Chloride
 Acid Strength of Aminium Ions
 Some K Values for Acids in Water
 Kₐ and K Values for Aminium Ions
 Kₐ Values Measure both Acidity and Basicity
 Kₐ and pKₐ Values
 Effects of R on R-NH₃⁺ Acidity and R-NH₂ Basicity
 Comparative Basicities of 1°, 2°, and 3° Amines
Basicity of Alcohols and Ethers (3.6D) 3-57
Basicity of Haloalkanes (3.6E) 3-57

4: Stereochemistry

4.1 Tetrahedral Carbon Configurations 4-3
 Two Configurations at Tetrahedral Carbon (4.1A) 4-3
 Non-Superimposable Mirror Images
 Handedness and Chirality
Chiral Atoms (4.1B) 4-4
 Chiral Carbon Atoms
 Other Chiral Atoms
 Molecular Chirality

(continued next page)
4.2 Stereoisomers and R,S Assignments 4-6
 R and S Nomenclature (4.2A) 4-6
 Clockwise and Counterclockwise Isomers
 The Assignments of R and S
 R and S Assignment Rules (4.2B) 4-8
 Case 1. Each Atom Directly Bonded to a Chiral C is Different
 Case 2. Two or More Atoms Bonded to a Chiral C are the Same
 Case 3. Groups with Double and Triple Bonds
 More Complex Molecules

4.3 The Number and Types of Stereoisomers 4-13
 Compounds Can Have 2ⁿ Stereoisomers (4.3A) 4-13
 2-Bromo-3-chlorobutane
 Configuration at C2 in the (2R,3R) Isomer
 Configuration at C2 in the other Stereoisomers
 Relationships Between Stereoisomers (4.3B) 4-15
 Enantiomers
 Diastereomers
 Compounds with Fewer than 2ⁿ Stereoisomers (4.3C) 4-17
 2,3-Dibromobutane
 Meso Form

4.4 Drawing Structures of Stereoisomers 4-21
 3-D Conformations of Stereoisomers (4.4A) 4-21
 Many Ways to Draw the Same Stereoisomer
 3-D Structures for Comparing Stereoisomers
 Fischer Projections (4.4B) 4-24
 Definition of Fischer Projections
 Manipulations of Fischer Projections
 Using Fischer Projections to Draw Stereoisomers

4.5 Cyclic Molecules 4-33
 Cyclic Stereoisomers (4.5A) 4-33
 Chiral Centers in 1-Bromo-3-methylcyclohexane
 Stereoisomers of 1-Bromo-3-methylcyclohexane
 Stereochemical Relationships between cis and trans Isomers
 Isomeric Bromomethylcyclohexanes
 Drawings of Cyclic Stereoisomers (4.5B) 4-37
 Wedge-Bond Structures
 Chair Forms
 Haworth Projections

4.6 Optical Activity 4-39
 Rotation of Plane Polarized Light and the Polarimeter (4.6A) 4-39
 Polarimeter
 Light Rotation by the Sample
 Magnitude and Sign of Light Rotation (4.6B) 4-41
 Observed versus Specific Rotation
 Specific Rotations of Enantiomers
 Relative and Absolute Configurations
 Specific Rotations of Diastereomers
 d and l Isomers
 Racemic Mixture

Appendix A: Resolution of Stereoisomers 4-43
 Resolution of Diastereomers
 Resolution of Enantiomers

Appendix B: Optical Purity 4-46
 %Optical Purity
 Enantiomeric Excess (%ee)

Appendix C: Absolute Configuration 4-47
5: Organic Spectrometry

5.1 Spectrometry in Organic Chemistry
Types of Spectrometry (5.1A)
- Mass Spectrometry (MS)
- Nuclear Magnetic Resonance Spectrometry (NMR)
- Infrared Spectrometry (IR)
- Ultraviolet-Visible Spectrometry (UV-Vis)

5.2 Mass Spectrometry (MS)
Formation of Molecular and Fragment Ions (5.2A)
- Molecular Ion
- Fragment Ions
- Molecular and Fragment Ions from Methane.

The Mass Spectrometer and Mass Spectrum (5.2B)
- Mass Spectrometer
- Mass Spectrum
- Mass-to-Charge Ratios (m/z Values)
- Peaks for the Molecular Ion and Fragment Ions

Hexane (5.2C)
- Molecular Ion and Fragment Ions from Hexane
- Exact Mass Values
- M+1 Peaks and Isotopes

Mass Spectra of Hexane Structural Isomers (5.2D)
- The Molecular Ion Peaks
- Fragmentation

Mass Spectra of Compounds with Functional Groups (5.2E)
- General Features
 - 1-Pentanol (Y = OH)
 - 1-Pentanamine (Y = NH₂)
 - 1-Chloropentane (Y = Cl)
 - 1-Bromopentane (Y = Br)
 - 1-Iodopentane (Y = I)

Mass Spectrometry Summary (5.2F)

5.3 Spectrometry Using Electromagnetic Radiation
Electromagnetic Spectrum (5.3A)
- Photons of Electromagnetic Radiation
- Frequency and Wavelength of Electromagnetic Radiation
- Units of Frequency or Wavelength

Basic Spectrometer Design (5.3B)
- Spectrometer Components
- Spectral Peaks

5.4 Nuclear Magnetic Resonance Spectrometry
The NMR Spectrometer (5.4A)
- ¹H and ¹³C are NMR Active Nuclei (5.4B)

5.5 ¹³C NMR Spectrometry
General Considerations (5.5A)
- Some ¹³C NMR Spectra (5.5B)
 - Methanol versus Ethanol
 - The Other Alcohols

¹³C NMR Chemical Shifts (δ) (5.5C)
- Generalizations for these Alcohols
- Chemical Shifts Depend on Electron
- Prediction of ¹³C δ Values
- Calculations for 1-Hexanol
- δ Values and Electronegativity
- Chemically Equivalent Carbons

(continued next page)
5.5 13C NMR Spectrometry (continued)

Additional Details about NMR Spectra (5.5D)

Shielding

High and Low Field

The TMS Reference in 13C NMR

Solvents Used in NMR Spectrometry.

Qualitative Predictions of 13C Spectra (5.5E)

5.6 1H NMR Spectrometry

1H versus 13C NMR Chemical Shifts (5.6A)

1H NMR Spectrum of Bromoethane (5.6B)

The Origin of the 1H NMR Signals

The Shapes of the Signals

Signal Splitting in 1H NMR Spectra (5.6C)

1-Bromoethane

2-Bromopropane

1-Bromopropane

The Origin of 1H NMR Signals

The Origin of Signal Splitting in 1H NMR Spectra

The Relative Intensity of NMR Signals (5.6D)

Signal Intensities in 1H NMR Spectra

Signal Intensities in 13C NMR Spectra

1H NMR Chemical Shift (δ) Values (5.6E)

The TMS Reference in 1H NMR.

5.7 Infrared Spectrometry

Infrared Energy Causes Molecular Vibrations (5.7A)

The Infrared Spectrometer (5.7B)

IR Sample Cells

Solvents for IR Samples.

IR Spectra (5.7C)

The Horizontal Axis

The Vertical Axis.

IR Stretching and Bending Signals (5.7D)

Characteristic IR Regions

Alkanes

Amines

More IR Later

5.8 UV-Visible Spectrometry

Structural Requirements for UV-Vis Spectra (5.8A)

UV and Visible Radiation Excites Electrons (5.8B)

The UV-Vis Spectrometer (5.8C)

UV-Vis Sample Cells

Solvents for UV-Vis Spectrometry

UV-Vis Spectra (5.8D)

The Horizontal Axis

The Vertical Axis

More UV-Vis Later

II. Reactions, Mechanisms, Multiple Bonds

6: Organic Reactions (Not Posted)

This chapter will introduce general types of organic reactions. It will highlight the fundamental differences between ionic, radical, and concerted reactions, as well as between single step and multiple step chemical transformations. It also will also introduce and contrast basic concepts of reaction mechanisms, chemical kinetics, and chemical synthesis.
7: Reactions of Haloalkanes, Alcohols, and Amines.
Nucleophilic Substitution

7.1 Nucleophilic Substitution Reactions of Haloalkanes
Nucleophilic Substitution Mechanisms (7.1A)
The S_N1 Mechanism.
The Meaning of S_N1.
The S_N2 Mechanism.
S_N1 and S_N2 Reactions are Ionic.
Conversion of Haloalkanes to Alcohols (7.1B)
t-Butyl Alcohol ((CH$_3$)$_3$C-OH) from t-Butyl Bromide ((CH$_3$)$_3$C-Br) (S_N1).
Solvent Stabilizes the Intermediate Ions.
Methanol (CH$_3$-OH) from Bromomethane (CH$_3$-Br) (S_N2).
H$_2$O versus $-$:OH as a Nucleophile.

7.2 S_N1 versus S_N2 Mechanisms
Steric Sizes of R Groups in R$_3$C-Br (7.2A)
Relative S_N2 Rates for Different R$_3$C-Br.
Steric Crowding.
Carbocation Stabilization by R Groups in R$_3$C-Br (7.2B)
Relative S_N1 Rates for Different R$_3$C-Br.
Carbocation Stability.
S_N Mechanisms for Simple Haloalkanes (7.2C)
CH$_3$-Br and (CH$_3$)$_3$C-Br.
CH$_3$CH$_2$-Br and (CH$_3$)$_2$CH-Br.
Alkyl Group Stabilization of Carbocations (7.2D)
Carbocation Geometry and Hybridization.
Hyperconjugation.
Effects of Alkyl Group Substitution at a β-Carbon (7.2E)
S_N1 Mechanisms.
S_N2 Mechanisms.

7.3 Haloalkane Structure and Reactivity
A Comparison of F, Cl, Br, and I as Leaving Groups (7.3A)
Relative S_N Rates for RI, RBr, RCl, and RF.
S_N Rates of R-X and H-X Acidity.
Leaving Group Ability.
Other Nucleophiles, Leaving Groups, and Solvents (7.3B)
The General Substrate R-L.
Preview.

7.4 Stereochemistry of S_N Reactions
Stereochemistry in the S_N2 Reaction (7.4A)
Inversion of Configuration.
The Need for a C-L Stereocenter.
S_N2 Reactions on 2-Chlorobutane.
Stereochemistry in the S_N1 Reaction (7.4B)
Inversion and Retention of Configuration.
Racemic Product.

7.5 Reaction Rates of S_N Reactions
Reaction Rates (7.5A)
S_N2 Reaction Rates.
S_N1 Reaction Rates.

(continued next page)
7.5 **Reaction Rates of S_N Reactions** (continued)

Activation Energies (7.5B)

- Energy Diagram for an S_N1 Reaction.
- S_N1 Activation Energies.
- Energy Diagram for an S_N2 Reaction.

7.6 **Other Nucleophiles**

ROH and RO$^-$ as Nucleophiles (7.6A)
- ROH Nucleophiles.
- RO$^-$ Nucleophiles (Williamson Ether Synthesis).
- Limitations of the Williamson Ether Synthesis.
- Alkoxide Ion Formation.
- Formation of Cyclic Ethers (Epoxides).

R_2NH and R_2N$^-$ as Nucleophiles (7.6B)
- Amine Nucleophiles R_2NH.
- The Amine Products React Further.
- Two Different R Groups on N.
- $3 \approx$ Amine (R_3N) Nucleophiles.
- Amide Nucleophiles R_2N$^-$.
- S_N1 Mechanisms and Amine Nucleophiles.

RSH and RS$^-$ as Nucleophiles (7.6C)
- H_2S and HS$^-$.
- RSH and RS$^-$.

Halide Ion Nucleophiles (X^-) (7.6D)
- Formation of Fluoroalkanes.
- Formation of Iodoalkanes.

The Nucleophiles N_3^- and $\cdot C\equiv N$ (7.6E)
- Cyanide Ion.
- Azide Ion.

7.7 **Leaving Groups**

The OH Group in Alcohols (R-OH) (7.7A)
- R-OH is a Poor Substrate for S_N Reactions.
- R-OH$_2^+$ is a Good Substrate for S_N Reactions.
- Haloalkanes from Protonated Alcohols.

The OR Group in Ethers (R-OR) (7.7B)
- Haloalkanes from Cleavage of Ethers.

Ring Opening of Cyclic Ethers (7.7C)
- Epoxide Ring Opening.
- Acid Catalysis.
- Epoxide Ring Opening by Halide Ions.

A Summary of Leaving Groups (7.7D)
- Some "Good" Leaving Groups.
- Some "Poor" Leaving Groups.
- Leaving Group Ability and K_a Values for H-L.

7.8 **Nucleophilicity and Reaction Solvent**

The Halide Ions (7.8A)
- Solvent Dependence of Nucleophilicity.
- Origin of Solvent Effect.
- Solvation Changes during an S_N2 Reaction.
- Solvation by Hydroxylic Solvents.

Polar Aprotic Solvents (7.8B)
- Some Examples of Polar Aprotic Solvents.
7.8 Nucleophilicity and Reaction Solvent (continued)

Nucleophilicities of Other Nucleophiles (7.8C) 7-57
Nucleophiles and their Conjugate Bases.
Nucleophiles in the Same Row of the Periodic Table.
Nucleophiles in the Same Column of the Periodic Table.
Comparative Nucleophilicities in S_N^2 versus S_N^1 Reactions.

7.9 Carbon Nucleophiles 7-58

Organometallic Compounds give C Nucleophiles (7.9A) 7-59
Organomagnesium and Organolithium Compounds.
Carbon Polarity in Organometallic Compounds.
C-C Bond Formation Using Organometallic Compounds (7.9B) 7-61
Small Ring Formation.
Alkyl Group Coupling.
Reactions with Epoxides.
Positive, Negative and Neutral Carbon Atoms (7.9C) 7-62

7.10 Nucleophilic Hydrogen 7-62

The Polarity of H in Various Compounds (7.10A) 7-62
Metal Hydrides are Sources of Nucleophilic H (7.10B) 7-64

Appendix: Nucleophiles and Leaving Groups 7-66

8: Alkenes and Alkynes

8.1 Alkenes 8-3

Unbranched Alkenes (8.1A) 8-3
Ethene.
Propene.
1-Butene and 2-Butene.
Other Alkenes and Cycloalkenes.

Alkene Stereoisomers (8.1B) 8-7
(E)-2-Butene and (Z)-2-Butene.
Other E and Z Alkenes.
E,Z Assignment Rules.
E and Z Stereoisomers are Diastereomers.
cis and trans Isomers.

More than One C=C in a Molecule (8.1C) 8-12
Polyenes.
Allenes.

Nomenclature of Substituted Alkenes (8.1D) 8-14
Alkyl and Halogen Substituted Alkenes.
Alkyl and Halogen Substituted Cycloalkenes.
Alkyl and Halogen Substituted Polynes.
Alkenes With OH or NH$_2$ Groups.
Common Names of Substituted and Unsubstituted Alkenes.

Alkene Stability (8.1E) 8-17
Relative Stability of Isomeric E and Z Alkenes.
C=C Substitution and Alkene Stability.
Stability of Cycloalkenes.

8.2 Alkynes 8-21

Unbranched Alkynes (8.2A) 8-21
Nomenclature.
Alkynyl Structure.

Alkynyl Stability (8.2B) 8-23
C-H and C-C Bond Lengths (8.2C) 8-23
Alkanes, Alkenes, and Alkynes.
Acidity of C≡C-H Hydrogens (8.2D) 8-24
(continued next page)
8.2 Alkynes (continued)
 Allenes (8.2E)
 Nomenclature.
 Structure and Bonding.
 Bond Lengths.

8.3 Spectrometric Features of C=C and C≡C Bonds
 13C NMR Spectrometry (8.3A)
 ^{1}H NMR Spectrometry (8.3B)
 Infrared Spectrometry (8.3C)
 UV-Vis Spectrometry (8.3D)

9: Formation of Alkenes and Alkynes.
 Elimination Reactions

9.1 Elimination Reactions
 Common Features of Elimination Reactions (9.1A)
 General Equations.
 Haloalkane Substrates.
 Mechanisms for Elimination of H-X (9.1B)
 The E2 Mechanism.
 The E1 Mechanism.
 Stereochemistry of E1 and E2 Elimination (9.1C)
 E2 Elimination.
 E1 Elimination.
 Other Elimination Reactions (9.1D)
 The E1cb Mechanism.
 Elimination of X-X.
 α-Elimination to form Carbenes. (to be added later)

9.2 Mechanistic Competitions in Elimination Reactions
 Substitution Competes with Elimination (9.2A)
 S_N1 and E1 Reactions Compete.
 S_N2 and E2 Reactions Compete.
 Nucleophile versus Base.
 E1 and E2 Reactions Can Compete (9.2B)
 E1 and E2 with 3° Haloalkanes.
 Strongly Basic Nucleophiles Favor E2 Over E1.
 Different Alkene Products (9.2C)
 Effect of Alkene Stability.
 Zaitsev's Rule.
 Other Halide Leaving Groups (9.2D)
 Relative Reactivity.
 Alkene Product Distribution.
 The Type of Base (9.2E)
 Alkoxide and Amide Ions.
 Effect on E2/S_N2 Competition.
 Other Bases.
 The Solvent and The Temperature (9.2F)
 Solvents.
 Temperature.
9.3 Alkynes and Allenes from Haloalkanes
 Dehydrohalogenation (9.3A) 9-20
 Different Alkyne Products (9.3B) 9-21
 Elimination of X-X (9.3C) 9-22

9.4 Alkenes from Alcohols
 Acid Catalyzed Dehydration (9.4A) 9-22
 \[H_2SO_4 \text{ or } H_3PO_4. \]
 Dehydration Mechanism.
 Alcohol Structure.
 Substitution Can Compete.
 Rearranged Alkene Products (9.4B) 9-25
 Carbocation Rearrangements.
 1° Alcohol Dehydration.
 Rearrangements of Carbocations from Other Sources.
 Other Dehydration Reagents (9.4C) 9-27
 Alkynes Are Not Formed by Alcohol Dehydration (9.4D) 9-27

9.5 Alkenes from Amines
 Quaternary Aminium Hydroxides (9.5A) 9-28
 Hofmann Amine Degradation.
 Alkene Product.
 Amine Oxides Give Alkenes (9.5B) 9-31

10: Alkenes and Alkynes. Electrophilic and Concerted Addition Reactions

10.1 Addition Reactions 10-3
 General Considerations (10.1A) 10-3
 Ionic Addition Reactions (10.1B) 10-4
 Electrophilic Addition
 Electrophiles and Nucleophiles
 Nucleophilic Additions
 Non-Ionic Addition Reactions (10.1C) 10-5
 Radical Addition
 Concerted Addition
 Summary

10.2 Electrophilic Addition of H-X or \(X_2 \) to Alkenes 10-6
 Addition of H-X (10.2A) 10-6
 Intermediate Carbocations
 Markovnikov's Rule
 Carbocation Rearrangements
 Stereochemistry
 Electrophilic Addition of Br\(_2\) (10.2B) 10-11
 Mechanism
 Stereochemistry
 Electrophilic Addition of Other Molecular Halogens (10.2C) 10-12
 Cl\(_2\) Addition
 F\(_2\) or I\(_2\) Addition
 Iodonium Ions are Possible
 Formation of Halohydrins (10.2D) 10-14
 Mechanism
 Orientation

10.3 Addition of H-X and \(X_2 \) to Alkynes 10-15
 Addition of H-X (10.3A) 10-15
 Addition of \(X_2 \) (10.3B) 10-16
10.4 Alkenes to Alcohols by Electrophilic Addition

Acid Catalyzed Hydration of Alkenes (10.4A) 10-16
Mechanism 10-17
Orientation of Addition 10-17
Rearranged Products 10-17
Oxymercuration-Demercuration (10.4B) 10-17
Overall Transformation 10-17
Mechanism 10-17
Hydration of Alkynes (10.4C) 10-19

10.5 Alkenes to Alcohols by Hydroboration

Hydroboration of Alkenes with BH₃ (10.5A) 10-21
Overall Reaction Sequence 10-22
Formation of the Organoborane Intermediate 10-22
Concerted Addition Mechanism 10-22
The BH₃ Reagent 10-22
Conversion of R₃B to the Alcohol (R-OH) 10-26
Hydroboration with RBH₂ and R₂BH Reagents (10.5B) 10-26
Disiamyborane 10-26
Thexylborane 10-26
9-BBN 10-26
Regioselectivity 10-26
Hydroboration of Alkynes (10.5C) 10-28

10.6 Addition of H₂ to Alkenes and Alkynes

Catalytic Hydrogenation of Alkenes (10.6A) 10-28
Heterogeneous Catalysts 10-28
Heterogeneous Catalysis Mechanisms 10-28
Homogeneous Catalysts 10-28
Structure of Homogeneous Catalysts 10-28
Homogeneous Catalysis Mechanisms 10-28
Hydrogenation of Alkynes (10.6B) 10-31
Catalytic hydrogenation 10-31
Lindlar Catalyst 10-31
Sodium Metal in NH₃ 10-31
H₂ Addition Reactions are Reduction Reactions (10.6C) 10-32

11: Free Radical Substitution and Addition Reactions

11.1 Free Radicals and Free Radical Reactions 11-3
Free Radicals (11.1A) 11-3
Halogen Atoms 11-3
Alkoxy Radicals 11-3
Carbon Radicals 11-3

11.2 Halogenation of Alkanes with Br₂ 11-6
Bromination of Ethane (11.2A) 11-7
Mechanism 11-7
Initiation Step 11-7
Propagation Steps 11-7
The CH₃-CH₂· Radical 11-7
Radical Chain Reactions (11.2B) 11-10
Propagation Steps Repeat 11-10
Many Chains Occur Simultaneously 11-10
Termination Reactions (11.2C) 11-11
Combination Reactions 11-11
Disproportionation Reactions 11-11
Polybromination (11.2D) 11-12
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Alternate Bromination Sites</td>
<td>11-13</td>
</tr>
<tr>
<td></td>
<td>General Mechanism for Propane Bromination</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Origins of 1-Bromopropane and 2-Bromopropane</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Propagation Reactions</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Termination Reactions</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Polybromination</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Relative Yields of 1-Bromopropane and 2-Bromopropane</td>
<td>11-17</td>
</tr>
<tr>
<td>11.4</td>
<td>Relative Reactivity of C-H Hydrogens</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>C-H Bond Strengths</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>Bond Strengths</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>C-H Bond Strength and Alkane Structure</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>Relative Reactivities of C-H's</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>Radical Stability</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>Relative Stabilities of Alkyl Radicals</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td>Origin of Radical Stability Order</td>
<td>11-18</td>
</tr>
<tr>
<td>11.5</td>
<td>Alkane Halogenation with Cl₂, F₂, or I₂</td>
<td>11-23</td>
</tr>
<tr>
<td></td>
<td>Chlorination</td>
<td>11-23</td>
</tr>
<tr>
<td></td>
<td>Relative Product Yields in Chlorination and Bromination</td>
<td>11-23</td>
</tr>
<tr>
<td></td>
<td>Cl is More Reactive and Less Selective than Br</td>
<td>11-23</td>
</tr>
<tr>
<td></td>
<td>Correlation Between Reactivity and Selectivity</td>
<td>11-23</td>
</tr>
<tr>
<td></td>
<td>Fluorination and Iodination of Alkanes</td>
<td>11-23</td>
</tr>
<tr>
<td>11.6</td>
<td>Radical Additions to Alkenes</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>H-Br Addition</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>H-Br Addition Mechanism</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Propagation</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Initiation</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Termination</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>H-Br Addition Regiochemistry</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Radical versus Electrophilic Addition</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Radical Stability</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Steric Effects</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>H-Br Addition Stereochemistry</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>H-I, H-Cl, and H-F Additions are Electrophilic</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Radical Addition of Br₂ or Cl₂</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>Competitive Substitution</td>
<td>11-26</td>
</tr>
<tr>
<td></td>
<td>F₂ and I₂</td>
<td>11-26</td>
</tr>
<tr>
<td>11.7</td>
<td>Alkane Halogenation with Other Reagents</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>t-Butyl Hypohalites</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>t-Butyl Hypohalite Preparation</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>N-Bromosuccinimide</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>Overall Reaction</td>
<td>11-36</td>
</tr>
<tr>
<td></td>
<td>Mechanism</td>
<td>11-36</td>
</tr>
<tr>
<td>11.8</td>
<td>Halogen Atom Reactivity and Selectivity</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Reaction of Methane with X</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Structural Changes During Reaction</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Energy Changes During Reaction</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Exothermic and Endothermic Reactions</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Transition States or Activated Complexes</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Energy Maximum and Transition State</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Reaction Rates and Activation Energy</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Reactivity and Activation Energies</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>An Explanation for Selectivity-Reactivity Correlation</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Resemblance of Transition States to Reactants and Products</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>Radical Character in the Transition State</td>
<td>11-38</td>
</tr>
<tr>
<td></td>
<td>The Hammond Postulate</td>
<td>11-38</td>
</tr>
</tbody>
</table>
III. Conjugation, Electronic Effects, Carbonyl Groups

12: Conjugated and Aromatic Molecules

12.1 Conjugated Molecules 12-4
 1,3-Butadiene (12.1A) 12-4
 Atomic Orbital Overlap in 1,3-Butadiene
 Molecular Orbitals
 The Bonding M.O.'s
 Conformations
 Other Alternating Multiple Bonds
 Pentadienes (12.1B) 12-7
 1,3-Pentadiene
 1,4-Pentadiene
 1,2-Pentadiene.
 Stability of Conjugated Systems (12.1C) 12-9
 Heats of Hydrogenation of Pentadienes
 Heats of Hydrogenation of Butadienes
 Aromatic Molecules (12.1D) 12-11

12.2 Reactivity of Conjugated Systems 12-11
 Addition of H-Cl to 1,3-Butadiene (12.2A) 12-11
 Products
 Mechanism
 Delocalized Carbocation
 Resonance Structures (12.2B) 12-14
 Carbocation Resonance Structures
 Meaning of Resonance Structures
 Meaning of The Double Headed Arrow
 Other Reactions with Delocalized Intermediates (12.2C) 12-16
 Acid Catalyzed Hydration
 Electrophilic Halogenation
 Free Radical Addition of H-Br.

12.3 Writing Resonance Structures 12-18
 A General Procedure (12.3A) 12-19
 Carbocations (C+) (12.3B) 12-19
 Carbanions (C-) (12.3C) 12-20
 Radicals (C.) (12.3D) 12-20

12.4 More on Delocalized Systems 12-21
 Localized vs. Delocalized Intermediates (12.4A) 12-21
 Reactions other than Addition (12.4B) 12-21
 Solvolyis of Haloalkenes
 Radical Halogenation
 Conjugated Systems with Heteroatoms (12.4C) 12-23
 Resonance Forms with Heteroatoms
 Relative Importance of Resonance Forms

12.5 Benzenoid Aromatic Molecules 12-25
 Benzene (12.5A) 12-25
 Reactivity
 Stability
 1H NMR Spectra
 The Real Structure of Benzene (12.5B) 12-27
 Benzene Geometry
 Benzene Resonance Structures
 Benzene Molecular Orbitals

(continued next page)
12.9 Spectrometry of Conjugated and Aromatic Molecules (continued)

UV-Visible Spectral Data (12.9B) 12-58
Conjugated Polenes
The Electron Excitation Process
Arenes
The Use of UV-Visible Data
Infrared Spectrometry (12.9C) 12-61

13: Carbonyl Compounds:
Ketones, Aldehydes, Carboxylic Acids

13.1 Carbonyl Compounds 13-3
The Carbonyl Group (C=O) (13.1A) 13-3
Carbonyl Compounds from Alcohol Oxidation (13.1B) 13-4

13.2 Nomenclature 13-4
Ketones (Alkanones) (13.2A) 13-4
Aldehydes (Alkanals) (13.2B) 13-5
Carboxylic Acids (Alkanoic Acids) (13.2C) 13-7
Carboxylate Ions
Common Nomenclature (13.2D) 13-8
Carboxylic Acids
Aldehydes
Ketones
Acyl Groups

13.3 Oxidation and Reduction 13-12
General Features (13.3A) 13-13
Oxidation States of Organic Compounds (13.3B) 13-13
Bond Order of Carbon Atoms
Oxidation Numbers
Aldehydes from Oxidation of 1 ° Alcohols (13.3C) 13-16
Pyridinium Chlorochromate (PCC)
Other Cr(VI) Reagents
Ketones from Oxidation of Secondary Alcohols (13.3D) 13-16
Oxidation of Tertiary Alcohols is Not a Useful Reaction
Carboxylic Acids from Oxidation of Aldehydes (13.3E) 13-18
Oxidation of Ketones is Not a Useful Reaction
Comparative Oxidation States (13.3F) 13-20

13.4 Structure and Reactivity of Groups with C=O 13-20
Bonding and Structure of Ketones and Aldehydes (13.4A) 13-20
Bonding
Polarity
Bonding and Structure of Carboxylic Acids (13.4B) 13-21
Bonding and Polarity
Hydrogen Bonding
Reactivity and Selectivity of C=O Groups (13.4C) 13-22
Addition of Electrophiles
Addition of Nucleophiles
Conjugate Addition of Nucleophiles

13.5 C=O Influence on Reactivity of Neighboring Atoms 13-24
Acidity of Carboxylic Acids (Y is O) (13.5A) 13-24
Acidity Constants
Resonance Effects
Acidity of Hydrogens on α-Carbons (Y is CR₂) (13.5B) 13-26
C-H Kₐ Values
Enolate Ions and Enols
Keto-Enol Tautomerization
13.6 Spectrometric Properties of Carbonyl Compounds

Ultraviolet-Visible Spectrometry (13.6A)

$\pi \rightarrow \pi^*$ Excitation

$n \rightarrow \pi^*$ Excitation

Infrared Spectrometry (13.6B)

$C=O$ Stretch

$C-H$ Stretch in Aldehydes

$O-H$ Stretch in Carboxylic Acids

$C=O$ Bands in Carboxylic Acids

NMR Spectrometry (13.6C)

^{13}C NMR

1H NMR

14: Substituent Effects

14.1 Substituents and Their Effects

Substituent Effects (14.1A) 14-3

Some Reactions or Properties

Transmission of Substituent Effects

Substituents (14.1B) 14-4

A List of Substituents

Structure-Reactivity Correlations

14.2 Carboxylic Acid Acidity

Substituent Effects on Acidity Constants (14.2A) 14-5

Magnitude of the Effect

Origin of the Substituent Effect

When the Substituent is F

How $C-F$ Polarity Affects Acidity.

Inductive Effects for Other S Groups (14.2B) 14-8

Electron Withdrawing Groups

Electron Donating Groups

$+I$ and $-I$ Groups

Location of S Groups (14.2C) 14-10

Distance Attenuation

Field Effects

Additivity of Inductive Effects

Inductive Effects are General

14.3 S_N1 Reactions

Origin of the Substituent Effect (14.3A) 14-12

Some Substrates $S-R-Y$ (14.3B) 14-13

Solvolysis of Adamantyl Tosylates

Solvolysis of Cumyl Chlorides

Resonance

Resonance Effects (14.3C) 14-15

p-Substituted Cumyl Chlorides

The Substituents F and CH$_3$O

The Origin of the Resonance Effect

R Effects of Substituents

$+R$ Groups

$-R$ Groups

Correspondence between I and R Properties

14.4 Electrophilic Aromatic Substitution Reactions

Reactions on Substituted Benzenes (14.4A) 14-19

Rates and Products Depend on S

meta versus ortho/para Directors

(continued next page)
14.4 Electrophilic Aromatic Substitution Reactions (continued)

Directive Effects of Substituents (14.4B)

- Resonance Structures for o, m, and p Reactions
 +R Groups
 -R Groups

Reactivity of Substituted Benzenes (14.4C)

- R Substituents
 +R Substituents
 I and R Effects Can Compete
 Halogens have Contradictory Rate and Product Effects

Reactions at the ortho Positions (14.4D)

Statistical Effects

Steric Hindrance

Additional Considerations

Multiple Substituents (14.4E)

1,4-Dimethylbenzene
1,3-Dinitrobenzene
1,3-Dimethylbenzene
1,2-Benzenedicarboxylic Acid
p-Chlorotoluene
m-Chlorotoluene

15: Carbonyl Compounds:
Esters, Amides, and Related Molecules

15.1 Carboxyl Compounds with the Structure R-C(=O)-Z

The C(=O)-Z Functional Group (15.1A)
The Z Group
 α-H Acidity and Enol Content
R-C(=O)-Z Compounds are Interconvertible (15.1B)
 Acid Chloride Interconversions
Nucleophilic Acyl Substitution
Oxidation States of R-C(=O)-Z Compounds (15.1C)
R-C≡N versus R-C(=O)-Z (15.1D)
Comments about Nomenclature (15.1E)

15.2 Acid Halides (R-C(=O)-X)

Preparation, Reactivity, and Properties (15.2A)
 Preparation
 Reactivity and Properties
Nomenclature (15.2B)

15.3 Esters (R-C(=O)-OR’)

Preparation, Reactivity, and Properties (15.3A)
 Preparation
 Reactivity
 Properties
 Electron Delocalization
Nomenclature (15.3B)
 The R’ Part
 The RC(=O)O Part
 Systematic or Common

15.4 Amides (R-C(=O)-NR’2)

Preparation and Reactivity (15.4A)
Structure of Amides (15.4B)
 Amides are Planar
 C-N Rotation is Restricted
 cis and trans Isomers of Amides

(continued next page)
15.4 Amides (R-C(=O)-NR₂) (continued)

Properties of Amides (15.4C)
- Amide Basicity
- Amide Hydrogen Bonding
- Amides as Solvents

Nomenclature (15.4D)

15.5 Anhydrides (R-C(=O)-O-C(=O)-R)

Preparation, Reactivity, and Properties (15.5A)
- Preparation of Symmetrical Anhydrides
- Preparation of Mixed Anhydrides
- Reactivity of Anhydrides

Nomenclature (15.5B)

15.6 Nitriles (R-C≡N)

Preparation and Properties (15.6A)
- Alkyl Nitriles
- Aryl Nitriles
- Properties of Nitriles

Nomenclature (15.6B)

15.7 Lactones, Lactams, and Cyclic Anhydrides

Structure (15.7A)
- Cyclic Anhydrides
- Lactones and Lactams

Nomenclature (15.7B)
- Lactones
- Lactams

15.8 Biologically Important Molecules with R-C(=O)-Z Groups

Esters (15.8A)
- Waxes
- Fats and Oils

Amides (15.8B)
- Proteins
- Peptides

Lactams (15.8C)

15.9 Spectrometric Properties of R-C(=O)-Z and R-C≡N

Ultraviolet-Visible Spectrometry (15.9A)
Infrared Spectrometry (15.9B)
- C=O Stretch
- C-O Stretch
- N-H Stretch and N-H Bend
- C≡N Stretch

NMR Spectrometry (15.9C)
- 13C NMR
- 1H NMR
- Determination of C-N Rotational Barriers in Amides

IV. Carbonyl and Pericyclic Reactions and Mechanisms

16: Addition and Substitution Reactions of Carbonyl Compounds

16.1 Carbonyl Groups React with Nucleophiles

Overview (16.1A)
16.1 Carbonyl Groups React with Nucleophiles (continued)

Addition and Substitution (16.1B) 16-4
Addition Reactions
Substitution Reactions
Addition and Substitution Mechanisms
Types of Nucleophiles (16.1C)
Enolate Ions 16-6

16.2 The Nucleophile HO\(^{-}\)

HO\(^{-}\) in HOH (16.2A) 16-7
Relative Nucleophilicities of HO\(^{-}\) and HOH
Competitive Enolate Ion Formation
HO\(^{-}\) Addition to Ketones and Aldehydes (16.2B) 16-8
1,1-Diols are Called Hydrates
Ketones, Aldehydes, and Their Hydrates
HO\(^{-}\) Substitution on R-C(=O)-Z Compounds (16.2C) 16-9
The Mechanism
When Z is OH

16.3 The Nucleophile HOH 16-10
Activation of C=O by Protonation (16.3A) 16-10
Protonated C=O Group
Reaction with HOH
Acid Catalyzed Addition of HOH to Aldehydes and Ketones (16.3B) 16-11
Acid Catalyzed Addition of Water to R-C(=O)-Z (16.3C) 16-14
The Overall Mechanism
The Tetrahedral Intermediate
Loss of the Z Group
Proton Shifts
Amide Hydrolysis as an Example
"Uncatalyzed" Addition of HOH to Carbonyl Compounds (16.3D) 16-17
Uncatalyzed Aldehyde Hydration
Uncatalyzed Hydrolysis of R-C(=O)-Z

16.4 Alcohols (ROH) as Nucleophiles 16-19
ROH Addition to Aldehydes and Ketones gives Hemiacetals (16.4A) 16-19
Hemiacetal Formation Mechanism
Acid Catalyzed Formation of Acetals (16.4B) 16-21
Acetal Formation Mechanism
Acetals Serve as Protecting Groups
ROH Addition to R-C(=O)-Z (16.4C) 16-23
General Mechanism
ROH Reaction with Acid Halides
ROH Reactions with Carboxylic Acids and Esters

16.5 Amines (R\(_2\)NH) as Nucleophiles 16-25
Reaction of Amines with Ketones or Aldehydes (16.5A) 16-25
Imines
Enamines
Reaction of Amines with R-C(=O)-Z (16.5B) 16-29
Amines and Anhydrides or Esters
Amines and Carboxylic Acids
Other Nitrogen Nucleophiles (16.5C) 16-31
Hydrazines as Nucleophiles
Wolff-Kishner Reaction
Hydroxylamine as a Nucleophile

16.6 Carbon Centered Nucleophiles 16-32
Different Types of C Nucleophiles (16.6A) 16-32
(continued next page)
16.6 Carbon Centered Nucleophiles (continued)
Organometallic Reagents (16.6B) 16-33
Overview
Magnesium, Lithium and Zinc Reagents
Addition of "R-M" to Aldehydes and Ketones (16.6C) 16-34
Stepwise Reactions
Solvents
Mechanisms
Side Reactions
Addition of "R-M" to Carbonyl Compounds R-C(=O)-Z (16.6D) 16-36
A General Mechanism
3° Alcohol Formation
Ketone Formation

16.6 Carbon Centered Nucleophiles (continued)
Reactions of "R-M" with Carboxylic Acids (16.6E) 16-38
Reactions with CO₂ (16.6F) 16-38
Reaction of Cyanide Ion with C=O Groups (16.6G) 16-38
Cyanohydrins
Mechanism of Cyanohydrin Formation
Reaction of Ph₃P=CR₂ with C=O Groups (16.6H) 16-40
Wittig Reaction
Formation of the Wittig Reagent
Mechanism of the Wittig Reaction

16.7 Other Nucleophiles 16-42
The Hydride Nucleophile (16.7A) 16-42
Chloride Ion as a Nucleophile (16.7B) 16-43

16.8 Nucleophilic Addition to C=N and C≡N Bonds 16-45
Additions to C=N (16.8A) 16-45
Addition of Water
Addition of Organometallic Reagents
Addition of Cyanide Ion
Strecker Synthesis
Additions to C≡N (16.8B) 16-47
Addition of Water
Hydrolysis Reaction Mechanism
Addition of Organometallic Reagents

17: Oxidation and Reduction 17-3

17.1 Oxidation and Reduction Occur Together 17-3
Redox Reactions Involve Electron Transfer (17.1A) 17-3
Inorganic Redox Reactions
Organic Redox Reactions
Oxidation Levels of Organic Compounds (17.1B) 17-5
Carbon Oxidation Numbers
Definitions of Organic Oxidation and Reduction
Presentation of Redox Reactions in this Chapter

17.2 Oxidation of Alcohols and Aldehydes 17-6
Oxidation Using Cr(VI) Reagents (17.2A) 17-6
Chromate and Dichromate Reagents
Unwanted Oxidation of Aldehydes
Jones Oxidation
Modified Cr(VI) Reagents
Cr(VI) Oxidation Mechanisms
(continued next page)
17.2 Oxidation of Alcohols and Aldehydes (continued)

Other Inorganic Oxidizing Agents (17.2B) 17-10
\[\text{MnO}_2 / \text{Sodium Hypochlorite (NaOCl)} \]
Organic Oxidizing Agents (17.2C) 17-11
Ketones to Ésters
Aldehydes to Carboxylic Acids and Alcohols
Alcohols to Ketones or Aldehydes

17.3 Oxidation of Carbon-Carbon Multiple Bonds 17-15
Addition of Oxygen to \(\text{C} = \text{C} \) Bonds (17.3A) 17-15
Epoxide Formation Using Peroxacycids
Formation of syn-1,2-Diols Using \(\text{OsO}_4 \) or \(\text{MnO}_4^- \)
Formation of anti-1,2-Diols
Oxidative Cleavage of Carbon-Carbon Multiple Bonds (17.3B) 17-17
Cleavage Using Ozone (O3)
Cleavage Using \(\text{CrO}_3 \) or \(\text{KMnO}_4 \)
Cleavage of 1,2-Diols Using \(\text{HIO}_4 \) or \(\text{Pb(OAc)}_4 \)

17.4 Oxidation of Alkyl Groups 17-19
Metal Oxide Oxidations (17.4A) 17-20
\[\text{KMnO}_4 \text{ and CrO}_3 \]
\[\text{Cl}_2\text{CrO}_2 / \text{SeO}_2 \text{ Oxidations} \]
O2 Oxidations (Autoxidation) (17.4B) 17-20
Autoxidation Mechanism
Synthetic Utility

17.5 Phenols, Hydroquinones, and Quinones 17-21
Formation of Phenols (17.5A) 17-22
From Cumene
From Aryl Halides
From Arylsulfonic Acids
From Diazonium Ions
Formation of Quinones and Hydroquinones (17.5B) 17-24

17.6 Reduction Reactions 17-25
General Features (17.6A) 17-25
Types of Reduction Reactions (17.6B) 17-25
Reduction Using \(\text{H}_2 \)
Metal Hydride Reagents
Presentation of Reduction Reactions

17.7 Reduction of Ketones and Aldehydes 17-27
Alcohols from Metal Hydride Reductions (17.7A) 17-27
\[\text{LiAlH}_4 \text{ Mechanism} \]
\[\text{NaBH}_4 \text{ Mechanism} \]
Alcohols from Diborane Reduction
Alcohols from Organic Reducing Agents (17.7B) 17-30
Cannizzaro Reaction
Meerwein-Ponndorf-Verley Reduction
Alkyl Groups from \(\text{C}=\text{O} \) Reduction (17.7C) 17-31
Clemmensen Reduction
Wolff-Kishner Reaction

17.8 Reduction of R-(=O)-Z and Related Compounds 17-32
Alcohol Formation (17.8A) 17-33
General \(\text{LiAlH}_4 \text{ Mechanism} \)
Carboxylic Acid Reduction
Diborane Reduction of Carboxylic Acids (continued next page)
17.8 Reduction of R-C(=O)-Z and Related Compounds (continued)

Amine Formation (17.8B) 17-34
 Reduction of Amides
 Reduction of R-C≡N and R-NO2
Aldehyde Formation (17.8C) 17-35
 Acid Halides and LiAlH(O-C(CH3))3
 Esters and Diisobutylaluminum Hydride (DIBAL)
 Nitriles and DIBAL
 Rosenmund Reduction

17.9 Reduction of C≡C and C=C Bonds 17-37
 Reduction of Alkenes and Alkynes (17.9A) 17-37
 Reduction of Arenes (17.9B) 17-37

18: Reactions of Enolate Ions and Enols

18.1 Enolate Ions and Enols 18-3
 Halogenation, Alkylation, and Condensation Reactions (18.1A) 18-3
 Acidity of α-C-H's (18.1B) 18-4
 Resonance Stabilization
 Enol Form of the Carbonyl Compound (18.1C)
 Protonation on C or O
 Acid Catalyzed Enol Formation
 Enol Content
 Other Types of "Enolate" Ions (18.1D)
 Active Hydrogen Compounds
 Reactions of Active Hydrogen Compounds

18.2 Halogenation Reactions 18-8
 The General Halogenation Reaction (18.2A) 18-8
 Acid Catalyzed Halogenation of Ketones and Aldehydes (18.2B) 18-8
 Mechanism
 Polyhalogenation
 Regiospecificity
 a-Halogenation of Ketones and Aldehydes Using Base (18.2C)
 Mechanisms
 Polyhalogenation
 The Haloform Reaction
 Regiospecificity
 a-Halogenation of Carboxyl Compounds R-C(=O)-Z (18.2D) 18-13
 Carboxylic Acids, Acid Halides, and Anhydrides

18.3 Alkylation Reactions 18-14
 α-Alkylation Mechanism (18.3A) 18-14
 C versus O Alkylation
 Bases and Solvents
 Bases / Solvents
 Alkylation of Ketones and Aldehydes (18.3B) 18-16
 Ketones / Aldehydes
 Alkylation of Esters and Carboxylic Acids (18.3C) 18-18
 Esters / Carboxylic Acids

18.4 Condensation Reactions 18-18
 The Aldol Reaction (18.4A) 18-18
 The Base
 The New C-C Bond
 Aldol Reaction Mechanism
 Dehydration of the Aldol Product
 Aldol Reactions are Equilibria
 Acid Catalyzed Aldol Reactions

(continued next page)
18.4 Condensation Reactions (continued)

Variations on the Aldol Reaction (18.4B)
Mixed Aldol Reactions
Intramolecular Aldol
The Enolate Ion is Not from a Ketone or Aldehyde

The Claisen Condensation (18.4C)
Claisen Condensation Mechanism
General Claisen Condensation Mechanism
The Claisen Condensation Product is "Acidic"
The Dieckmann Condensation
Variations of the Claisen Condensation

18.5 Enolate Ions from β-Dicarbonyl Compounds

Acidity of α-H's in β-Dicarbonyl Compounds (18.5A)
α-Alkylation of β-Dicarbonyl Compounds (18.5B)
Their Mechanisms are Similar
Decarboxylation of Carboxylic Acids with β-C=O Groups
Further Alkylation
Alkylation of Other Z-CH2-Z'

18.6 Other Reactions of Enolate Ions and Enols

Michael Addition Reactions (18.6A)
Mechanism
Robinson Annulation (18.6B)
Mechanism
Enamine Alkylation (18.6C)
Stork Enamine Reaction
Dialkylation
Reformatsky Reaction (18.6D)
Products and Mechanism
The Mannich Reaction (18.6E)

19: Cyclization and Pericyclic Reactions (Not Posted)

Reactions That Make Rings
Cyclization Reactions
Enolate Ion Intermediates
Intramolecular Aldol Reaction.
Dieckmann Condensation.
Malonic and Acetoacetic Ester Syntheses.
Robinson Annulation.
Favorskii Rearrangement.
Organometallic Intermediates
Intramolecular Grignard Reactions.
Intramolecular Wurtz Reactions.
Intramolecular Wittig Reaction.
Cationic Intermediates
Friedel-Crafts Reactions.
Carbocation Addition to Alkenes.
Carbocation Ring Contraction and Expansion.
Ring Expansion of Cyclic Ketones.
Radical Intermediates
Intramolecular Addition of Carbon Radicals to C=C.
Acyloin Ester Condensation.
Carbene and Carbenoid Intermediates
Methylene.
Alkylcarbenes.
Diahalocarbenes.
Carbenoid Species.
19: Cyclization and Pericyclic Reactions (Not Posted) (continued)

Pericyclic Reactions

Cycloaddition Reactions
- The Diels-Alder Reaction (2 + 4 cycloaddition)
- Alkene Dimerization (2 + 2 Cycloaddition of Alkenes)

Theoretical Considerations of Cycloaddition Reactions
- The Möbius-Hückel Method
- Frontier Orbital Method

Electroyclic Rearrangements
- Electroyclic Ring Closure
- Electroyclic Ring Opening

Sigmatropic Rearrangements
- The Cope Rearrangement
- The Claisen Rearrangement
- Hydrogen Migration
- Pericyclic Rules for Sigmatropic H Migrations
- Sigmatropic C Migrations
- Pericyclic Rules and the Cope and Claisen Rearrangements

V. Bioorganic Compounds

20: Carbohydrates

20.1 Monosaccharides

Furanoses and Pyranoses (20.1A) 20-3
Glucose and Related Pyranohexoses (20.1B) 20-4
- Chiral C Atoms
- Enantiomers and Diastereomers
- RS Configurations
- D and L
- α and β
- Configurations at the Other Chiral C's
- Haworth Projections
- Chair Forms of Monosaccharides
- Mutarotation (20.1C) 20-10
 - α and β Anomers are in Equilibrium
 - The Mutarotation Reaction
 - Equilibrium Concentrations of α and β-D-Glucose
- Acyclic Mutarotation Intermediates (20.1D) 20-12
 - Representations of the Acyclic Intermediate
 - Acyclic Forms of the Other Stereoisomers
- Furanose Forms (20.1E) 20-15
 - Glucose has Furanose Forms
 - Furanose Forms of Other Monosaccharides

Other Monosaccharides (20.1F) 20-16
- Aldotrioses, Aldotetroses, and Aldopentoses
- Cyclic Forms of C3, C4, and C5 Aldoses
- Ketoses

20.2 Chemical Reactions of Monosaccharides

Isomerization Reactions (20.2A) 20-19
- Mutarotation
- Epimerization

Nucleophilic Addition and Substitution (20.2B) 20-21
- Glycoside Formation
- Anomerization and Hydrolysis of Glycoside
- Addition of Carbon Nucleophiles
- Addition of Nitrogen Nucleophiles
- Esters and Ethers

(continued next page)
20.2 Chemical Reactions of Monosaccharides (continued)

Oxidation and Reduction (20.2C)
Halogen and Hypohalite Oxidations
Oxidation with HNO_3 or NO_2
Reduction with NaBH_4

20.3 Polysaccharides and Oligosaccharides

Disaccharides and Trisaccharides (20.3A)
Maltose and Celllobiose
Lactose
Sucrose
Reducing Sugars
Trisaccharides
Polysaccharides (20.3B)
Structural Polysaccharides
Storage Polysaccharides
Mucopolysaccharides
Glycoproteins

21: Lipids

21.1 Structures of Lipids

Fats, Oils, and Related Compounds (21.1A)
Fatty Acids
A Comparison of Fats and Oils
Hydrogenation of Fats and Oils
Soaps
Detergents
Waxes
Glycerophospholipids
The Biological Origin of Fatty Acids
Prostaglandins (21.1B)
Terpenes and Steroids (21.1C)
Terpenes
Steroids

21.2 Biosynthesis of Lipids

Acetyl-CoA (21.2A)
Fatty Acids (21.2B)
Palmitic Acid
Types of Reactions in Palmitic Acid Biosynthesis
Other Fatty Acids
Fats, Oils and Phospholipids (21.2C)
Waxes (21.2D)
Prostaglandins (21.2E)
Terpenes (21.2F)
Steroids (21.2G)

22: Peptides, Proteins, and α-Amino Acids

22.1 Peptides

Peptide Structure (22.1A)
α-Amino Acids in Peptides
α-Amino Acids Can be D or L
The R Groups
Categories of "Standard" Amino Acids
Abbreviated Names
Peptide Synthesis (22.1B)
General Considerations
Automated Peptide Synthesis
22.2 Protein Structure and Organization

Primary (1°) Structure (22.2A)
Content
Sequence
Separation of Individual Peptide Chains

Secondary (2°) Structure (22.2B)
Planarity of Amide Groups
Helical Structures
β-Pleated Sheets
Other Structures

Tertiary (3°) Structure (22.2C)
Fibrous Proteins / Globular Proteins.
Factors that Determine Protein Shape (22.2D)
Hydrophobic Bonding
Electrostatic Interactions and Hydrogen Bonding
Disulfide Bonds
Quaternary (4°) Structure
Denaturation

22.3 Properties of α-Amino Acids

α-Amino Acids Are Polyprotic Acids (22.3A)
Diprotic α-Amino Acids
Diprotic Amino Acid Forms at Different pH Values
Triprotic α-Amino Acids
Aspartic and Glutamic Acid
Lysine, Arginine, and Histidine
Cysteine and Tyrosine

Isoelectric Points (22.3B)
\(pI \) Values of Diprotic Amino Acids
\(pI \) Values of Triprotic Amino Acids

Laboratory Synthesis of Amino Acids (22.3C)
Amination of α-Bromo acids
Strecker Synthesis
Reductive Amination
Diethylacetamidomalonate Synthesis

Biosynthesis of α-Amino Acids (22.3D)
Non-Essential Amino Acids
Essential Amino Acids

22.4 Enzymes and Enzyme Catalysis

General Features (22.4A)
Active Sites
Enzyme Catalysis Mechanism
Substrate Specificity
Types of Enzymes
α-Chymotrypsin (22.4B)
α-Chymotrypsin Active Site
General Hydrolysis Mechanism
Detailed Hydrolysis Mechanism

23: Nucleic Acids

23.1 Structures of Nucleic Acids
Nucleotides and Nucleosides (23.1A)
The Sugar
The Heterocyclic Bases
The Phosphate Groups
Nucleotide and Nucleoside Nomenclature

(continued next page)
23.1 Structures of Nucleic Acids (continued)

Polynucleotide Structure (23.1B)
- The Sugar-Phosphate Backbone
- Hydrolysis of Polynucleotides

Comparative Structures of DNA and RNA (23.1C)
- The DNA Double Helix
- RNA Polynucleotides
- Sizes of DNA and RNA

Base Pairing (23.1D)
- DNA
- RNA
- Tautomers of Heterocyclic Bases

Forces that Influence Nucleic Acid Structure (23.1E)
- Hydrogen Bonding
- Hydrophobic Bonding
- Ionic Interactions

Sequencing Nucleic Acids (23.1F)
- Sequencing Strategy
- Chemical Sequencing
- Analysis of Cleavage Fragments

Chemical Cleavage Reagents and their Reactions (23.1G)
- A and G Nucleosides
- G Nucleosides
- C and T Nucleosides

23.2 Replication, Transcription, and Translation

Replication (23.2A)
- Replication is Semiconservative
- Replication Occurs 5′→3′

Transcription (23.2B)

Translation (23.2C)
- mRNA
- Amino Acid-tRNA Molecules
- Codon-Anticodon Hydrogen Bonding
- Steps in Protein Synthesis

23.3 Nucleotide Biosynthesis and Degradation

Biosynthesis (23.3A)
- Purines
- Pyrimidines
- Deoxyribose Nucleotides

Degradation of Heterocyclic Bases (23.3B)
- Purines
- Pyrimidines