Collisional Activation and Dissociation: Via Ion-neutral Complexes

1. Theory

1.1 Planetary Motion

Ion–neutral complexes intervene in a wide variety of unimolecular and bimolecular ionic reactions in the gas phase. This article deals with unimolecular decompositions that occur in ionized organic molecules. Most compounds exhibit a large number of peaks in their fragmentation patterns, both in the ion source and under conditions of collisionally activated decomposition. Dissociations via transient, noncovalent intermediates (i.e., ion–neutral complexes) contribute minor peaks in many systems, and the dominant peaks in a few. The scope of ion–neutral complex-mediated pathways has yet to be fully explored. The discussion below focuses on a handful of examples that have been closely studied.

In the gas phase, chemical species can move like heavenly bodies. Because an ion and a neutral attract one another, they may enter orbit around their center of mass. If, however, they behave like the Earth–Sun system, the rotation of each body should be independent of their revolution about one another (e.g., the difference between a day and a year). A neutral with a large permanent dipole moment might exhibit locked rotation (like the Moon, which keeps one face pointed towards the earth, so that a day on the moon lasts a month). In any event, the rotation and revolution of the ion should be virtually independent of one another. “Planetary motion” of an ion and a molecule has been proposed on the basis of theoretical models, and transient intermediates that obey this description have been characterized experimentally. Such intermediates are called ion–neutral (or ion–molecule) complexes. There is evidence to implicate ion–neutral complexes in decompositions of singly charged parent ions produced by all types of ionization under all sorts of dissociation conditions.

A simple example of planetary motion for a stable molecular species has been described for the cluster of Li⁺ with a molecule of tetrahedral elemental phosphorus (<Bib1>1), which can be represented as [P₄ Li⁺]. The molecular fragment has no permanent dipole, so its rotation does not exert a large effect on the attractive potential between it and the ion. At room temperature, the average internal energy of [P₄ Li⁺] is calculated to be greater than the barrier height for turning the P₄ in any direction. In other words, there is little directed valence between P₄ and Li⁺. Whatever attraction exists between them does not have much covalent character. The term “electrostatic bonding” is sometimes used in order to signify that changes of orientation of one partner relative to the other have little effect beyond what would be predicted by classical ion–dipole and ion–induced dipole forces.

The cluster of ammonium ion with hydrogen fluoride, NH₄⁺ · · · FH, displays a higher degree of complexity (<Bib2>2), because the ion and the neutral can both rotate. At low internal energies, the fluorine is hydrogen bonded to one of the ammonium hydrogens and the attraction between them exhibits directionality. With only a small amount of internal excitation, the ammonium ion starts to rotate independently of the HF molecule, even though the latter remains with its dipole pointed towards the electric charge. In this “planetary” system, the ion plays the role of the Earth and HF the role of the Moon.

1.2 Constraints Imposed by Conservation of Angular Momentum

Although the NH₄⁺ · · · FH cluster ion has yet to be observed experimentally, the proton-bound dimer of ammonia with fluoromethane, NH₄⁺ · · · FCH₃, has been seen in the mass spectrometer (<Bib3>3). Here, planetary motion should have an energy barrier comparable to the barrier to internal rotation about single bonds. Unlike the more familiar case of internal rotation (which is a one-dimensional motion about an interatomic axis), planetary motion includes free movement about axes perpendicular to the interfragment axis.

Planetary motion can be considered as the large-amplitude limit of a bending vibration. Consider NH₄⁺ · · · FCH₃ with zero net angular momentum. Figure 1 portrays classical descriptions of symmetric (a) and antisymmetric (b) bends of hydrogen-bonded NH₄⁺ · · · FCH₃ in the plane of the page, where each set of arrows stands for a phase of the relative classical motions. A linear combination of these two vibrations, (a) + (b), gives libration of the ammonium ion by itself about an axis perpendicular to the H· · · F hydrogen bond, (c). In (c) the double-headed arrow symbolizes the rocking back and forth of the ion at the same time as the F–C bond remains pointed towards the positive charge. The representations in Fig. 1 do not include small displacements of the centers of mass of NH₄⁺ and of FCH₃ away from their equilibrium positions, which are necessary if there is to be no torque associated with these bending vibrations. In the large amplitude limit of Fig. 1(c) the ammonium ion turns 360°, and the compensatory displacements of the individual centers of mass also execute 360° turns, as illustrated by Fig. 1(d). The net result is free rotation of the ammonium ion accompanied by revolutions of the individual centers of mass so as to keep the total angular momentum constant in exciting from (c) to (d). These compensatory motions of the centers of
Collisional Activation and Dissociation: Via Ion-neutral Complexes

Two normal modes of the ammonium-fluoromethane system with zero angular momentum: a symmetric bend (a) and an asymmetric bend (b), along with their superposition (c), corresponding to (a) minus (b). The center of mass of fluoromethane is represented by a heavy dot, and (d) represents the large amplitude limit of (c), where conrevolution of the individual centers of mass of the ammonium ion and the fluoromethane (symbolized by small arrows) compensates for the angular momentum of rotation of the ammonium ion about an axis perpendicular to the plane of the page.

Consider a hydrogen atom abstraction reaction between a methyl radical (CH$_3^·$) and an even-electron ion (AH$^+$). Let us suppose that the approach of CH$_3^·$ and AH$^+$ is barrier free when the system has no net angular momentum ($J = 0$), as represented by the lower dashed curve in Fig. 2. The minimum of this incoming curve will be assumed to have the covalent structure CH$_3$AH$^{+·}$. Let us further suppose that there is just one local maximum for the outgoing potential when $J = 0$ (as depicted by the solid curve in Fig. 2), corresponding to the activation energy for atom abstraction. The outgoing potential corresponds to the reaction coordinate for making the products, CH$_4$ and A$^·$.

If the two reactants encounter one another in a bimolecular collision, the system usually has a substantial angular momentum (large J), and there will be additional energy barriers resulting from the repulsive centrifugal potential ($<\text{Bib6} > 6$). The upper dashed curve in Fig. 2 represents the effective...
Incoming potential for the bimolecular encounter for nonzero J (cf. Chapter 1 of this volume). The height of the centrifugal barrier depends on rotational state, although the $J=0$ curve and the large J curve merge at long distances.

For unimolecular decomposition of a thermally equilibrated precursor (CH_3AH^+), the average rotational level at 300 K is so low that the centrifugal barrier height will be of the order of 1 cm$^{-1}$. Thus the effective potentials are virtually the same as the $J=0$ curves. For bimolecular reactions (large J), an ion–neutral complex can be imagined as an intermediate somehow trapped to the right of the centrifugal barrier. In other words, when an ion and a molecule attract one another from afar, a potential energy maximum stands between them and their covalently bound aggregate. In this regime, the reactants may spend time in one another’s vicinity even if they cannot surmount the potential energy barrier. By contrast, for a unimolecular reaction, the domain of ion–neutral complexes does not require that a potential energy barrier separate the complex from its covalent precursor CH_3AH^+. If two reactants, CH_3 and AH^+, were coming together on the lower dashed curve, they would need to stop rotating in order to form a covalent bond. A locked-rotor critical configuration would have to intervene, even in the absence of a potential energy barrier. For a unimolecular decomposition, two separating polyatomic cleavage fragments go out on the same curve as for their association and pass through the same type of bottleneck.

Ion–neutral complexes represent transient intermediates that have separated past that locked-rotor critical configuration, but which do not have enough translational kinetic energy to continue out to very large separation. The complex may have a total kinetic energy content well in excess of what is needed to separate the fragments, but if sufficient energy is not deposited into the translation of one fragment relative to the other, they are stuck for a brief interval in the domain represented by the double-headed arrow in Fig. 2. In many cases, this sojourn may last long enough for the fragments to find a competing exit pathway (such as represented by the solid curve in Fig. 2).

Scheme 1 compares simple cleavage of CH_3AH^+ with formation of an ion–neutral complex. Simple dissociation of CH_3AH^+ to CH_3 and AH^+ has a positive translational kinetic energy release T, whereas formation of an ion–neutral complex can be viewed as corresponding to a negative translational kinetic energy release, $T<0$. In other words,
Collisional Activation and Dissociation: Via Ion-neutral Complexes

the kinetic energy imparted to the fragments is not sufficient to overcome their mutual attraction. If the kinetic energy release $T > 0$ has a sufficiently small absolute value, then the fragments start to rotate relative to one another (as the dashed and curved arrows in Scheme 1 represent). Methyl radical has no dipole moment and a nearly isotropic polarizability, so both it and the ion can rotate independently of one another (subject, of course, to conservation of total angular momentum).

Rotations around axes perpendicular to the interfragment direction reduce the probability for reforming the covalent bond. In an \([\text{CH}_3\cdot \text{AH}^+]\) ion–neutral complex, the p orbital containing the unpaired electron of the methyl radical would have to point towards a vacant orbital of AH^+ in order to return to CH_3AH^+. Likewise, a vacant orbital of AH^+ would have to point towards the methyl radical. The dashed and solid curved arrows in Scheme 1 represent four degrees of freedom that are essentially free rotations, and freezing them in order to reform CH_3AH^+ diminishes the density of states substantially, thereby reducing the entropy. This entropic barrier to such a collapse gives the complex a lifetime long enough for the atom abstraction to take place.

The question arises whether ion–neutral complexes operate primarily when there is not enough energy for bond cleavage. This issue has been addressed in the case of ionized acetamide. A density-of-states model has been marshaled for the ketoform of the ion, CH_3CONH^+, to predict the probability of forming a $[\text{CH}_3\cdot \text{AH}^+]$ ion–neutral complex relative to the probability of simple bond fission ($<\text{Bib7}>7$), where AH^+ stands for N-protonated isocyanic acid, $\text{H}_2\text{N} = \text{C} = \text{O}^+$. This model argues that ion–neutral complexes need not be restricted to an energy range where the precursor ion has less energy than the dissociation threshold. In other words, ion–neutral complexes form even when CH_3AH^+ has an internal energy content considerably in excess of any centrifugal barrier to its dissociation. The anticipated experimental outcome from $[\text{CH}_3\cdot \text{AH}^+]$ is atom abstraction, leading to $\text{HN} = \text{C} = \text{O}^+$ as the ion A^+ observed in the mass spectrometer as a consequence of CH_4 elimination.

At the time the density-of-states model was first proposed ($<\text{Bib8}>8$), methane expulsion from ionized acetamide had never been reported (largely because the fragment ion is isobaric with $\text{CH}_3\text{C}=\text{O}^+$, a very prominent peak in the mass spectrum of acetamide). High-resolution mass spectrometry using 70 eV electron ionization gives an observed abundance of $\text{HN} = \text{C} = \text{O}^+$ about 0.04 the intensity of $\text{H}_2\text{N} = \text{C} = \text{O}^+$ (the base peak, which comes from CH_3 loss), as compared to a predicted abundance of 0.1 from the density-of-states model for $J = 0$. The comparison of theory with experiment is complicated by the fact that electron ionization of acetamide yields a mixture of two isomeric molecular ions (the enol tautomer $\text{CH}_3\text{C}(\text{OH}) = \text{NH}^+$ is about twice as abundant as the keto form) ($<\text{Bib9}>9$). The extent to which the density-of-states model agrees with measured peak intensities suggests that ion–neutral complexes form even when the precursor ions have high vibrational energy contents.

The metastable ion decomposition of ionized ^{15}N-labeled acetamide (where the ion from methane loss no longer has the same nominal mass as $\text{CH}_3\text{C}=\text{O}^+$) exhibits the same abundance of $[\text{M—CH}_4]^+$/ as is seen in the 70 eV source mass spectrum. The timescales of these two types of mass spectrometric measurement differ greatly (as, one presumably, do the internal energy distributions of the decomposing ions). The apparent insensitivity of the $[\text{M—CH}_4]^+$/ intensity ratio to internal energy confirms the conclusion that ion–neutral complexes can intervene over a wide domain of internal energies.

2. Experiment

2.1 Alkane Elimination: Homolytic and Heterolytic Mechanisms

Alkane eliminations, which occur from both even- and odd-electron organic ions, represent a class of unimolecular ion decompositions where ion–neutral complexes operate ($<\text{Bib10}>10$). Scheme 1 depicts a case that has been generalized for a variety of odd-electron ions, when an alkyl radical R is put in place of methyl. Photoionization studies of alkane eliminations show that they can compete effectively with production of R from a number of gaseous radical cations, even at energies considerably above the thermodynamic threshold for simple cleavage ($<\text{Bib11}>11$).

Scheme 1 exemplifies a homolytic mechanism. That is to say, the charge localized on the AH^+ part of the reactant remains on that fragment when the bond breaks. Alkane eliminations from even-electron reactants tend to operate via heterolytic mechanisms, i.e., where charge localized in one region of the reactant shifts to the other fragment after cleavage. Scheme 2 portrays such a pathway, as has been demonstrated for decompositions of gaseous alkoxide ions ($<\text{Bib12}>12$). Although it is likely that electric charge delocalizes to some extent between the partners in an ion–neutral complex, the rearrangement chemistry outlined later in this section makes it clear that the distinction between homolysis and

\[\begin{array}{c}
\text{R}^-
\end{array} \xrightarrow{\text{heterolysis}} \begin{array}{c}
\text{R}^-
\end{array} \xrightarrow{\text{proton transfer}} \text{RH} + \text{O}^-
\]

\text{Scheme 2}
heterolysis has meaning in the context of ion–neutral complexes. Another instance of heterolysis of an even-electron ion leading to alkane expulsion occurs in chemically ionized aromatic hydrocarbons. Extensive studies of systems in which two benzene rings are separated by an alkyl chain (as Scheme 3 exemplifies) demonstrate that ion–neutral complexes intervene. Hydrogens scramble very rapidly among the sp^2 centers in protonated aromatic systems (both within rings and between rings) (\leqBib13\geq13), so it does not matter where H^+ is initially deposited. Protonation ipso to a t-butyl group leads to heterolysis, forming an ion–neutral complex containing a t-butyl cation. When the two rings of the neutral partner are identical within the complex (e.g., R = methyl, R' = H), subsequent hydride abstraction occurs to equal extents from the α- and γ-positions. When the two rings are different, hydride abstraction to expel isobutane favors the position that gives the more stable benzylic cation (as when R = H and R' = methyl, where deuterium labeling shows a 16:84 ratio of α- to γ- abstraction) (\leqBib14\geq14).

Alkane elimination may occur in competition with alkene elimination. This is seen in the chemical ionization of ketones with CF$_4$ reagent gas. Electron ionization of CF$_4$ produces CF$_3^+$ ions, which attach to the carbonyl oxygen with an exothermicity of the order of $\Delta H = -3$ eV. For acyclic ketones with more than three carbons, the resulting vibrationally excited adduct ions decompose principally via expulsion of neutral hydrocarbon molecules. In the case of isobutyl ethyl ketone, $(CH_3)_2CHCH_2COCH_2CH_3$, about one-fourth of the adduct ions heterolyze to form ion–neutral complexes, as Scheme 4 depicts. These complexes expel propane to yield the allylic m/z 139 ion shown in Scheme 4 (whose structure has, in turn, been characterized by its collisionally activated decomposition pattern) (\leqBib15\geq15) about twice as often as they expel propene to give m/z 141 ions.

Ion–neutral complexes intervene as transient intermediates in many other unimolecular and bimolecular (ion–molecule) reactions. For historical reasons, the best-studied examples have been unimolecular decompositions of positive ions produced by electron, photo-, or chemical ionization of gaseous molecules. There is evidence for ion–neutral complexes (of both charges) in collisionally activated dissociation of ions electrosprayed from solution.

Collisional Activation and Dissociation: Via Ion-neutral Complexes

Scheme 3

heterolysis has meaning in the context of ion–neutral complexes.

Scheme 4

- CF$_3^+$ adduct
- ion-neutral complex
- Hydrogen abstraction (loss of propane)
- Proton transfer (loss of propene)

- m/z 139
- m/z 141

Scheme 5

- tBu
- ipso-protonated
- α- abstraction product
- γ- abstraction product
Complex-mediated reactions have been observed on timescales as brief as 10^{-11} s.

2.2 The Reorientation Criterion

When a neutral reactant cleaves, very weak forces hold the uncharged fragments together. These forces fall off rapidly with distance. At separations of a few angstroms the residual binding energy is typically $< kT$ at room temperature. In condensed phases, solvent or matrix molecules can hem in cleavage fragments and impede their escape from one another. This is called a cage effect. In the gas phase no such restraint prevents neutrals from rapidly separating from one another once covalent bonds have broken.

If one of the cleavage fragments carries net electric charge, ion–dipole and ion–induced dipole attraction falls off more slowly (cf. Chapter 1 of this volume), providing an electrostatic leash that often prevents their rapid separation, even in the absence of any solvent. This “leash effect” represents a gas-phase equivalent of the cage effect in condensed phases ($< \text{Bib16}>$16). Not all gas-phase ion dissociations pass through ion–neutral complexes. One sort of experimental evidence for a “leash effect” comes from dissociations that require a fragment within the complex to turn about an axis perpendicular to the broken bond, analogous to the large radius rotation shown in Fig. 1(d). Reactions that display this behavior are said to fulfill the reorientation criterion for inferring intermediacy of ion–neutral complexes ($< \text{Bib17}>$17).

The four examples below illustrate unimolecular ion dissociations of radical cations that meet the reorientation criterion (where the dashed arrows represent the reorientations). Scheme 5 portrays the decomposition of an ionized steroidal diamine, which demonstrates the reorientation of a neutral fragment that is much heavier than the ion (analogous to the planetary motion within $[P_4 \text{ Li}^+]$). Cleavage of a carbon–carbon bond of the molecular ion gives a neutral radical and an even-electron iminium ion. Reorientation of the radical brings the other nitrogen close enough to the iminium ion that proton transfer takes place, leading to expulsion of neutral $\text{CH}_3\text{CH}=\text{NH}$ and formation of a distonic ion ($< \text{Bib5}>$5) (see Organic Ion Chemistry (Positive): Distonic Radical Cations).

The second example illustrates reorientation of the ion. Ionization of carbonate esters gives rise to expulsion of CO$_2$. Scheme 6 summarizes the experimental result for phenyl s-butyl carbonate. Stereo-isotopic labeling demonstrates that loss of CO$_2$ gives ionized phenyl s-butyl ether with inversion of configuration at the asymmetric center ($< \text{Bib18}>$18). This has to take place via heterolysis of an oxygen–carbon bond followed by reorientation of the ionic fragment. Subsequent nucleophilic displacement via backside attack (represented by the solid curved arrow) generates the observed daughter ion.

The third example illustrates reorientation of both partners within an ion–neutral complex. Alkyl 4-pyridyl ether radical cations undergo double hydro-
gen transfers via ion–neutral complexes, expelling allylic radicals to produce protonated hydroxypyr-ridine, \(m/z 96 \) (<Bib19>). Scheme 7 depicts the double hydrogen transfer that takes place when cyclooctyl 4-pyridyl ether is ionized at low energy. An \(sp^3 \) carbon–oxygen bond heterolyzes, forming a cyclooctyl cation. In this cation, a hydrogen at position 5 bridges over to position 1, introducing a new element of symmetry. Position 2 becomes equivalent to position 4, and position 6 becomes equivalent to position 8. Deuterium labeling shows that the ionic fragment turns so as to render the newly equivalent positions equally accessible to the neutral partner (a pyridyloxy radical). The radical turns so that its nitrogen receives a proton to form a second complex containing cyclooctene and ionized 4-pyridone. After this proton transfer, the aromatic fragment executes another turn and its oxygen abstracts a hydrogen, yielding \(m/z 96 \) as the most abundant fragment ion (<Bib20>).</p>

The fourth example illustrates a case where a complex returns to a covalent intermediate following reorientation. The ionized ketone in Scheme 8 tautomerizes to a distonic ion and undergoes subsequent cleavage to expel 1,3-butadiene in a conventional McLafferty rearrangement. However, a thermodynamically preferred pathway involves further isomerization of the distonic ion (see Organic Ion Chemistry (Positive): Distonic Radical Cations) and expulsion of an ethyl radical. This latter isomerization passes through several distonic structures and proceeds slowly compared to the McLafferty rearrangement. Ions that do not have enough energy to complete the McLafferty rearrangement form ion–neutral complexes containing the McLafferty fragments. Reorientation of the butadiene partner and recombination interchanges chain positions 3 and 4 with positions 6 and 5, respectively. Isotopic labeling of carbon atoms reveals that this interchange takes place prior to metastable ion decompositions that expel ethyl radical (<Bib21>). Parenthetically, it should be added that ion–neutral complexes created by McLafferty rearrangements of other carbonyl compounds can lead to " McLafferty + 1" peaks when the enol radical cation abstracts a hydrogen atom from an \(sp^3 \) carbon of its neutral partner (<Bib22>).</p>

2.3 Rearrangements within Ion–Neutral Complexes

The most salient feature of ion–neutral complexes is that they permit rearrangements and reactions that could not take place from their covalent precursors. The first recognized examples of ion–neutral complexes were uncovered during studies of metastable oxonium ions, which expel water (<Bib22>). As Scheme 9 depicts, this decomposition requires a deep-seated rearrangement via two successive ion–neutral complexes. First a bond heterolysis forms a complex containing a cation and formaldehyde (often with
alkyl rearrangement). Then proton transfer produces a complex containing alkene and hydroxymethyl cation. *Ab initio* calculations (<Bib23>) on the simplest case (R = H) predict an energy barrier of the order of 100 kJ mol⁻¹ for reorientation of the hydroxymethyl cation within the complex (represented by the dashed arrow). Re-addition of the reoriented hydroxymethyl cation to the alkene gives an O-protonated carbonyl compound, from which elimination of water takes place to yield an allylic cation.

O-protonated carbonyl compounds can themselves decompose via ion-neutral complexes. Metastable ion decomposition of the conjugate acid from neopentyl methyl ketone gives t-butyl cation, but, as the deuterium labeling experiment drawn in Scheme 10 summarizes, only a small fraction of those ions come from simple cleavage. The initial bond fission forms the enol of acetone, which remains in a complex and undergoes hydron (H⁺/D⁺) exchange with its partner so as to yield the keto...
tautomer as the expelled neutral (\(<\text{Bib}24>\)24). The sequence of intermediates in Scheme 10 produces acetone conjugate acid ions, whose distribution of label also attests to the sequence of interconverting ion–neutral complexes.

Analogous bond heterolysis takes place within ether conjugate acid ions. Here, rearrangement does not necessarily occur, but the intermediacy of ion–neutral complexes is demonstrated by hydron exchange, as the sequence of reactions to the right in Scheme 11 depicts. Simple aliphatic ethers, such as methyl tert-butyl ether (MTBE, \(R=R' =\text{methyl}\)) tend to give alkyl cations in which the \(D\) originally deposited on oxygen has been incorporated into the hydrocarbon (\(<\text{Bib}25>\)25).

When \(R'\) is aromatic, protonated phenol ions (in place of protonated alcohols) dominate the product distribution. Some debate has arisen as to whether the precursor ether conjugate acid ions are ring protonated (like the ipso-protonated ion in Scheme 3) or O-protonated (like the conjugate acid ion in Scheme 11). Analysis of product distributions from a variety of deuterated conjugate acids from 2-phenoxypyropane (\(R=H, R'=\text{phenyl}\) in Scheme 11) has demonstrated that O-protonated ions are the precursors of the ion–neutral complexes from aryl alkyl ethers, just as they are from dialkyl ethers (\(<\text{Bib}26>\)26).

Hydrogen exchange between the partners in a complex can also occur in odd-electron ions. Atom abstraction from propane by ionized vinyl alcohol is nearly thermoneutral; hence, the formation of an ion–neutral complex containing those two partners leads to the reversible interconversion summarized in Scheme 12, in which the center atom of the expelled propane (which originates from position 3 of the precursor) scrambles hydrogen with the methyl originating from position 1 (\(<\text{Bib}27>\)27).

Heterolysis of an odd-electron precursor can give rise to hydrogen exchange, as well. For instance,
free radical, as Scheme 14 summarizes. 5-Hexenyl radicals close to form cyclopentylmethyl radicals, whereas 5-hexenyl cations close to form cyclohexyl cations. Ionized phenyl 5-hexenyl ether, \(\text{CH}_2=\text{CHCH}_2\text{CH}_2\text{CH}_2\text{OPh}^{+} \), expels neutral \(\text{C}_6\text{H}_{10} \) to give \(\text{PhOH}^{+} \). The deuterated precursor \(\text{CD}_2=\text{CHCH}_2\text{CH}_2\text{CH}_2\text{OPh} \) gives \(\text{PhOD}^{+} \) as well as \(\text{PhOH}^{+} \).

The expelled uncharged fragments have been collected in a specially designed electron bombardment flow (EBFlow) reactor, which is illustrated schematically in Fig. 3. The EBFlow reproduces the conditions in an electron ionization mass spectrometer source, but with a distance between the electron source and the target that is nearly 1 m long. Reactant gases (at pressures \([10^{-3}\text{torr}]\)) flow continuously along the path of the electron beam, which is kept from diverging by a coaxial magnetic field. Neutral products are collected in a cold trap and subsequently analyzed by gas chromatography or NMR.

EBFlow experiments on primary alkyl phenyl ethers show evidence of rearrangements that are characteristic of intermediate ion–neutral complexes containing a phenoxy and a hydrocarbon fragment. If the complex from \(\text{CH}_2=\text{CHCH}_2\text{CH}_2\text{CH}_2\text{OPh} \) had the electronic structure corresponding to initial bond homolysis, \([\text{PhO}^{+} \cdot \text{C}_6\text{H}_{11}^{-}] \), five-membered ring products, such as methylenecyclopentane, would have been expected among the expelled neutrals. By contrast, complexes resulting from initial bond heterolysis should have the structure \([\text{PhO} \cdot \text{C}_6\text{H}_{11}^{+}] \) and ought to produce cyclohexene among the collected neutral products. These two alternatives represent different electronic states of the ion–neutral complex. The experimental results show cyclohexene and no five-membered ring neutral products (<Bib28>). In general, ion–neutral complexes from odd-electron precursors arise either via homolysis (as in Schemes 1 and 12) or via heterolysis (as in Schemes 6 and 7) and rarely display evidence for two electronic states in competition with one another.

By contrast, competing rearrangement pathways have been observed in the formation of ion–neutral complexes, giving different structural isomers. When ionized, many 1-phenoxyalkyl compounds heterolyze to form ion–neutral complexes containing rearranged alkyl cations and a phenoxy radical. Schemes 15–17 illustrate cases where the competition between the formation of two different ion–neutral complexes has been investigated in detail, using both mass spectrometry and EBFlow techniques.

Scheme 15 portrays a cationic isomerization pathway that is well known from solution-phase chemistry, called a Wagner–Meerwein rearrangement. When \(X = \text{methyl} \), the two pathways in Scheme 15 are identical and indistinguishable, although two different neutral products are recovered in an EBFlow experiment (<Bib29>). The two isomeric 2-methylbutenes are produced in roughly the same ratio as is formed by deprotonation of free, gaseous \(\text{t}-\text{pentyl} \) cation, as one might expect from a Brønsted acid–base reaction between the partners in the complex, forming ionized phenol as the fragment ion detected in the mass spectrometer. When \(X = \text{F} \) in Scheme 15, the competing Wagner–Meerwein pathways (methyl shift versus fluorine shift) yield different neutral alkenes, and all of the neutral products shown in Scheme 15 are found in an EBFlow experiment (<Bib30>).
This leads to the question as to whether fluorine migration takes place via a bridged fluoronium ion. Evidence for that kind of bridging emerges from EBFlow studies of ionized β-fluorophenetole, as Scheme 16 summarizes (31). Two competing rearrangement pathways operate, both leading to the expulsion of neutral vinyl fluoride to form ionized phenol. However, analysis of the deuterium content of the neutral products from specifically labeled precursors demonstrates that 1,2-hydride shift and fluorine bridging function as distinct, nonsequential pathways in the formation of ion–neutral complexes.

In the next higher homologue, shown in Scheme 17, two different initial hydride shifts compete with one another. Both pathways—1,2-hydride shift and 1,3-hydride shift—lead to the same interconverting pair of isomeric ion–neutral complexes. The relative contributions of the two competing mechanisms can be measured by looking at a specifically deuterated precursor. The placement of isotopic label in the neutral 1-fluoropropenes recovered in an EBFlow experiment shows that 1,2-shift operates about 15 times more often than 1,3-shift (32). The phenomenon of multiple pathways to the same complex is not uncommon (33), and some effort has gone into determining the relative contributions of competing mechanisms by means of isotopic labeling.

3. Can Ion–Neutral Complexes be Predicted?

The sampling of complex-mediated reactions presented here gives an idea of the scope of this class of mechanisms. Although there are many other examples (some with more than one neutral partner—so called terbody complexes (34, 35)), it is fair to say that the majority of gas-phase ion decompositions are not complex mediated and take place via simple cleavages, distonic ion rearrangements, or other more conventional types of pathways (see \textit{Organic Ion Chemistry (Positive): Distonic Radical Cations}). What, then, are the properties that determine whether an ion complex operates in a unimolecular decomposition? As originally conceived, three criteria were viewed as having particular relevance (36):
(i) the precursor must be singly charged (because fragments with charges of the same sign repel one another);
(ii) the weakest bond of the precursor dissociates to give the complex (and the corresponding simple cleavage fragments are also often observed); and
(iii) the partners within the complex have to be able to undergo an ion–molecule reaction with each other.

It is now clear, however, that the second of these criteria is not essential. In the decomposition of ionized acetamide, for instance, other homolyses compete with the cleavage symbolized in Scheme 1: e.g., formation of \([\text{CH}_2\text{C}≡\text{O}^+\text{NH}_2^−]\) complexes, which lead to expulsion of ammonia or of carbon monoxide (\(<\text{Bib36}>7,\text{Bib38}>37\)). Nevertheless, as discussed in Sect. 1.3, a density-of-states model makes a reasonable quantitative prediction of the relative probability of forming \([\text{O}^−\text{C}−\text{NH}_2^+\text{CH}_3^+]\) complexes.

Despite the success of this approach (\(<\text{Bib7}>7,\text{Bib8}>8\)), it seems that no purely statistical model is likely to give a complete picture. The ratio of alkane to alkyl radical expulsion in isomeric radical cations shows a dependence on the site of cleavage (\(<\text{Bib11}>11,\text{Bib38}>38\)), which contradicts what one would expect if internal energy quickly randomizes over all internal degrees of freedom. Such a dependence implies an impulsive effect: namely, that the “kick” given one of the fragments during bond fission imparts to it an angular momentum that persists for the duration of the ion–neutral complex.

Other questions also remain to be answered. For instance, protonated ethers of all types decompose via complexes, as typified in Scheme 11. In the same vein, ionized alkyl 4-pyridyl ethers (as in Scheme 7) and primary alkyl phenyl ethers (as in Schemes 15–17) expel hydrocarbon fragments exclusively by heterolysis to form complexes. Yet this represents only a minor pathway for alkene expulsion from ionized secondary alkyl phenyl ethers (\(<\text{Bib39}>39,\text{Bib40}>40\)). Nor is it apparent, as of this writing, how large a translational kinetic energy release ought to be expected for the final products of a complex-mediated reaction (although much has been published on the subject (\(<\text{Bib36}>36,\text{Bib41}>41,\text{Bib42}>42,\text{Bib43}>41–43\)). As electronic databases of mass spectrometric fragmentations grow to include ever-larger ions (and as computer-assisted analyses of these databases proliferate), a more detailed understanding of ion–neutral complexes will surely develop. These sorts of questions will have to be addressed if mass spectrometry is to fulfill its promise as a stand-alone method of structural determination.

Acknowledgments

The support of NSF grant CHE9983610 is gratefully acknowledged.

Bibliography

- **Bib14** (14) Matthias, C.; Anlauf, S.; Weniger, K.; Kuck, D. Gaseous \([\text{C}_2\text{H}_4]^+\text{,diphenylalkane}\) Complexes: Methyl Substituent Effects on the Intracomplex Proton

T. H. Morton
University of California
Riverside, California
USA
Dear Author,

During the preparation of your manuscript for typesetting some questions have arisen. These are listed below. Please check your typeset proof carefully and mark any corrections in the margin of the proof or compile them as a separate list. This form should then be returned with your marked proof/list of corrections to Elsevier Science.

Information in margins: "SX000" codes relates to the subject index and "6-digit numbers" refer to cross-references to other articles in EMAS.

This form should then be returned with your marked proof/list of corrections to Jerome Michalczyk (j.michalczyk@elsevier.com; fax no. +44 (0) 1865 843974) at Elsevier Science Ltd., Major Reference Works, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB.

Queries and/or remarks

<table>
<thead>
<tr>
<th>No Queries</th>
</tr>
</thead>
</table>