University of California, Riverside

Department of Chemistry

Physical Chemistry

physical chemistrySubjects of first-year graduate courses include quantum mechanics, both time-dependent and time-independent, advanced thermodynamics, statistical mechanics, and kinetics. There are advanced elective courses in nanotechnology, group theory, computational chemistry, atmospheric chemistry and aerosols, nonlinear laser spectroscopy, surface science, scanning tunneling microscopy, advanced methods in NMR, and organic electronic materials. Faculty members in the area also have joint appointments in the School of Engineering, the department of Physics, and the Cell Molecular and Developmental Biology interdisciplinary program. The opportunity exists to do interdisciplinary research projects with two or more research advisors. There are weekly seminars at the departmental and area levels, along with meetings within research groups to familiarize students with current topics.

Faculty Research Descriptions:

Christopher Bardeen
The Bardeen Lab uses time-resolved laser spectroscopy and advanced microscopy methods to look at dynamics in complex chemical systems. Areas of research include DNA motion in living cells and energy transport in organic semiconductors.

Ludwig Bartels
The Bartels Group investigates dynamic processes of individual molecules at metal surfaces by means of scanning tunneling microscopy (STM) as well as other techniques (ultra-fast lasers, XPS, etc.). Recent work addressed nanorobots, nanoscale templating and the stability of molectronic structures. This work is funded by NSF and DOE.

In a different project, we investigate the formation, modification and processing of Molybdenum Disulfide (MoS2) and related materials. This project is funded by the NSF and the Semiconductor Research Corporation.

Gregory Beran
We use quantum chemistry to understand and predict chemical properties in molecular and extended systems, and we develop the new theoretical tools that make these calculations possible.

David Bocian
Spectroscopic (vibrational, electronic and magnetic resonance) and electrochemical studies of energy-transducing systems including heme and photosynthetic proteins, synthetic light-harvesting arrays, molecular photonic devices, and electrically addressable molecular memories.

Chia-en Chang
Molecular dynamics in chemical and biological systems: The Chang group primarily uses computational methods to investigate the chemistry of biological systems. The goal is to understand how molecules can bind and how molecular flexibility influences ligand binding, and use the knowledge to design drugs and interpret experiments. We have developed new methods to understand ligand binding kinetics.

Eric Chronister
Ultrafast vibrational and electronic dynamics in crystalline and amorphous molecular solids under extreme pressure and temperature conditions. Time-resolved coherent non-linear spectroscopy and transient grating studies under extreme conditions. Optical and chemical sensor properties of organically doped sol-gel glasses.

De-en Jiang
Computational materials chemistry and nanoscience. Growth mechanism of nanostructures. Organic-inorganic interfaces in dictating the morphology of nanoshapes. High-accuracy potentials for structure prediction of nanocatalysts. Structure-property relationship of porous carbons in energy storage and gas separations. Electrolyte/electrode interfaces in batteries and supercapacitors.

Ryan Julian
Mass spectrometry, spectroscopy, molecular dynamics, and ab initio calculations are used to examine the sequence, structure, and modification of biomolecules with an emphasis on proteins and peptides. Radical chemistry, supramolecular chemistry, ion-molecule reactions, photodissociation, and collisional activation are frequently employed in these experiments. The primary focus is to obtain a molecular level understanding of chemistry related to life.

Leonard Mueller
Solid-state and solution-state NMR as a probe of structure and dynamics.

Yadong Yin
The Yin lab explores the chemistry, physics, and materials science of colloidal inorganic nanostructures, with a goal towards applications in catalytic, electronic, photonic and biomedical applications.

Francisco Zaera
Surface chemistry with emphasis on heterogeneous catalysis and materials science; use of several surface sensitive techniques including RAIRS, TPD, XPS, ISS, AES, LEED and SIMS together with molecular beams for kinetic measurements.

Jingsong Zhang
Studies of elementary photochemical processes and reaction dynamics of small molecules and free radicals in atmospheric chemistry and combustion chemistry, use of laser spectroscopy, mass spectrometry and molecular beam techniques.

Graduate students and postdocs of the Physical Chemistry Program of UCR have moved on to positions at the following companies and institutions (academic positions indicated are permanent or faculty positions). Only a small subset is shown.


More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Department Information

Department of Chemistry
Chemical Sciences
501 Big Springs Road

Tel: (951) 827-3789 (Chair's Assistant)
Fax: (951) 827-2435 (confidential)